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Abstract

This study examines the initiation of propagation in a one-dimensional fiber by local stimulation with a small electrode.
The membrane dynamics is based on the generic FitzZHugh-Nagumo model. reduced in a singular limit to a nonlinear heat
equation. A steady-state solution of this nonlinear heat equation defines the critical nucleus, a time-independent distribution
of potential that acts as a threshold for propagating wavefronts. The criterion for initiation of propagation from the initial
conditions on potential is obtained by re-writing the nonlinear heat equation as a gradient flow of an energy and projecting
this gradient flow onto an approximate solution space. Assuming that the evolving potential has a shape of a Gaussian pulse,
the solution space consists of the amplitude of the pulse, @, and the inverse of its width, k. The evolution of the potential is
visualized on the (a, k) phase plane in which the rest state is a stable node and the critical nucleus solution is a saddle point.
The criterion for initiating propagation takes the form of a pair of separatrices that bisect all possible pulse widths. For a
specific pulse width, the separatrices determine the minimum amplitude necessary to start propagation. Infinitely broad pulses
(space-clamped fiber) require amplitude equal to the membrane excitation threshold. As the width of the pulse decreases, the
requirement on the amplitude grows. In a limit of very narrow pulses, the pulse width and the amplitude are related by a linear
relationship corresponding to a constant charge delivered by the pulse.

PACS: 87.22.Jb; 41.20.Bt; 02.60.Lj
Keywords: Reaction—diffusion equation; FitzHugh-Nagumo model; Propagation; Electric stimulation; Transmembrane potential;
Luminal length

1. Introduction FitzHugh—-Nagumo (FN) model [1,2]. The state vari-
ables, transmembrane potential v and inactivation
Consider an infinite one-dimensional fiber with variable y are governed by the following equations:
membrane dynamics described by the generic
- v =v — f () — ¥, Vi =€e(av—y). (1
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Fig. 1. (a) The cubic current—voltage relationship f'(v) which
in the NLHE (4) represents the excitability of the membrane.
Rest state is at v = 0. threshold at v = x, and the excited state
at v = . (b) The antiderivative f(v) of this current-voliage
relationship. (¢) The (v.vy) phase plane of the NLHE (4).
Arrows indicate the direction of increasing x. The homoclinic
orbit shown in a heavy solid linc corresponds to the critical
nucleus solution shown in Panel (d).

The roots of the cubic. v = 0. u. and I, correspond
to the rest state, threshold, and excited state of the
membrane. In order for (1) to give rise to a propagating
wavefront, g must satisfy 0 < p < %

If a brief external electric stimulus is applied to
a fiber at the rest state through a small electrode. it
instantaneously charges the membrane and causes a
local change in the transmembrane potential. This type
of external stimulation can be represented by initial
conditions at time ¢ = 0:

v(x,0) = vp(x) and y(x.0)=0. (

[o8}

The initial distribution of the transmembrane poten-
tial, vo(x), is spatially localized, with vp(x) — 0 as
|x| = 20. The total charge and energy associated with
the initial condition (3) are integrals proportional to
[ vo(x)ydx and [ vi(x)dx, respectively. Both
are assumed to be finite.

Under certain conditions, initial distribution vy{x)
elicits an action potential which gives rise to a prop-
agating wavefront. Propagating wavefronts have been
studied in great detail [3-7].

In comparison, the process by which an initial dis-
tribution caused by the stimulus develops into a full-
fledged propagating wavefront has received much less
attention. In 1937, Rushton introduced a concept of the
liminal length. According to this hypothesis, there is a
minimum length of a fiber that vp(x) must raise above
the excitation threshold in order to initiate the propa-
gating wavefront [8]. This concept has been followed
in more recent studies and appears to be consistent
with experimental data [9,10]. However, the analysis
leading to the liminal length hypothesis was based ei-
ther on a linear model of the excitable membrane [9]
or on a steady-state solution to the nonlinear model
[11]. By necessity, such models give an incomplete
picture of the initiation of the propagating wavefront.

A mathematically precise characterization of the
initiation of propagation has been carried out in a sin-
gular limit of Eq. (1), ¢ — 0. Thus, the inactivation
variable is kept at its rest state, y = 0, and the trans-
membrane potential satisfies the nonlinear heat equa-
tion (NLHE),

v = o — f(v) “4)

McKean and Moll [12], using a piecewise linear rep-
resentation of f'(v), demonstrated that for the ini-
tial data vo(x) corresponding to the local stimulation
with a single electrode, there exists a threshold sur-
face in the space of initial data that separates subcriti-
cal vy(x). which decay to zero, from the supercritical
vo(x). which expand into a pair of propagating wave-
fronts. This threshold was shown to form a smooth
surface of codimension | in the space of initial data.
Aronson and Weinberger [13] used a maximum prin-
ciple to investigate sufficient conditions for sub- and
super-critical initial data.

The actual construction of the threshold surface was
undertaken numerically by Moll and Rosencrans [14]
and Moll [15]. The method is based on the result of
McKean and Moll [12] which states that if vp(x) is
on the threshold surface, then v(x, r) would remain on
this surface and in the limit f — o0, v(x, t) would con-
verge 1o a solution of the time-independent equation.
This allowed Moll and Rosencrans to trace the thresh-
old surface by numerically solving NLHE (4) with
the initial data vo(x) lying on this surface. This study
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chose as vp(x) a rectangular pulse. Consequently, the
threshold surface was expressed as a relation between
the amplitude and the width of the initial pulse.

Our study takes a different approach to examining
the evolution of the initial pulse and determining the
criterion for the initiation of propagation. The basic
idea is to use the amplitude a and the width 1/ of the
pulse to characterize not only the initial data vg(x), as
in the work of Moll and Rosencrans [14], but aiso the
evolving pulse v(x, t). Specifically, the full dynamics
of the NLHE (4) is projected onto a two-dimensional
space of Gaussian pulses,

vix, t) = a(t)e_(k('mz. (5)

yielding a pair of ordinary differential equations
(ODEs) that describe the evolution of a(z) and k().
This simple projected dynamics produces a robust
and almost a quantitative approximation not only to
the threshold surface but also to the true dynamics of
the NLHE (4).

The threshold phenomenon in the full FN system
was studied by Terman [16], who demonstrated that
the initial data (3) is superthreshold if ¢ is sufficiently
small and vg(x) exceeds threshold ¢ over a sufficiently
long interval of x. Our study complements this rigor-
ous but abstract result with a concrete phenomenol-
ogy. Combined asymptotics and numerical simulation
allows us to observe that if vp(x) is sufficiently far
from the threshold curve of the NLHE, then the effect
of the inactivation variable y is a small perturbation,
and to investigate new phenomena arising when vg(x)
is very near the threshold curve.

This paper consists of four sections. Section 2 ex-
amines the steady-state solutions of the NLHE (4) and
introduces a concept of the critical nucleus, a time-
independent distribution v (x) that acts as a threshold
for propagating wavefronts. Section 3 introduces the
projected dynamics and uses it to formulate the criteria
for the initiation of propagation. Section 4 compares
the results obtained using the projected dynamics with
the numerical solutions to the NLHE (4) and with the
earlier results of Aronson and Wienberger [13], Moll
and Rosencrans [14], and Moll [15]. Section 5 re-
introduces the inactivation variable v and examines its

role in the initiation of propagation. Finally, Section 6
summarizes the limitations of this study and relates
the results to the liminal length hypothesis.

2. Critical nucleus

Consider the NLHE (4) with an initial condition
v(x,0) = vp(x) such that vo(x) — 0 as |x|] - o0
and vo(x) > u in some interval. As t — oo, v(x,1)
either decays to zero or develops an expanding inter-
val where v is nearly 1. The latter case is the propaga-
tion. A sufficient condition for either scenario can be
found based on the time-independent solution of the
NLHE [11,12]. This so-called critical nucleus solution
satisfies an ODE,

ver — f(v) =0. (6)
The first integral is

I=4vi— f, ™
where / is a constant of integration and f(v) is

f) = vt = 1+ vt + Juv’ (8)

Recall from (2) that f'(v) = O at v = 0, g, and 1.
Roots v = 0 and 1 are the minima of f(v) and u is a
local maximum (Fig. 1(b)). Fig. 1(c) shows the (v, vy)
phase plare which consists of level curves oriented
in the direction of increasing x. The trajectory that
satisfies the condition vy(x) — 0 as |x| — oo must
have I = 0 and takes the form of a homoclinic orbit
which starts from and returns to the rest point (0, 0).
It corresponds to the critical nucleus solution ver(x)
depicted in Fig. 1(d).

If the distribution of the transmembrane potential
in a fiber is equal to v (x), then the negative trans-
membrane current that flows in the proximity of the
electrode and that depolarizes the membrane towards
threshold is balanced by the positive, hyperpolarizing
current away from the electrode. Hence, the critical
nucleus solution represents a threshold for propaga-
tion. The solutions v(x, ) smaller than v, (x) decay
to zero as t — oc¢, and the solutions larger than ver(x)
develop an expanding interval with v near 1. The rig-
orous proof that the solution to the NLHE (4) with the
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initial conditions bounded above (below) by the crit-
ical nucleus solution always remains bounded below
(above) the critical nucleus solution is based on the
maximum principle [13].

Analytical expressions for the critical nucleus solu-
tion were computed by Noble [11] and McKean and
Moll [12] for the piecewise linear approximations of
f'(v). Here, vee(x) is computed for the cubic f/(v) in
an asymptotic limit 0 < u <« 1. In this limit, the am-
plitude of the critical nucleus is small, i.e., |ver| < 1.
Accordingly, the cubic polynomial (2) can be approx-
imated by a quadratic function,

f'w) ~vu —v). 9)

Hence, for the critical nucleus solution, integral (7) is
approximated by

%vi— %uvz+%v3 =0. (10)
The solution of this equation gives an expression for
the approximate critical nucleus

Ver(X) ~ Jpu sech? (5 /72 x). (1n

The amplitude a and the width [/k of this critical
nucleus are

3 1 2 7
a = 5/1, E = ﬁ (]-)
Note that a/k> = 6, which is a constant independent
of .

The critical nucleus acts as a propagation thresh-
old for a one-dimensional fiber in the similar way u
acts as an excitation threshold for the space-clamped
membrane. In the space-clamped case, if at any time
t, v(t) > w, the transmembrane potential will grow
towards the excited state, v = 1. Similarly, in a one-
dimensional fiber case, if at any time 1, v(x,1) >
ver(x), the potential in the whole fiber will grow to-
wards the excited state by means of a propagating
wavefront. However, in contrast to the space-clamped
membrane, vp(x) > v (x) is not a necessary condi-
tion for the initiation of propagation. Initial distribu-
tion vp(x) can be broader and of lower amplitude than
vr and still result in propagation. Likewise, there exist
vp(x) taller and narrower than v, that initiate prop-

agation. Thus, the next section will develop a more
general criterion for the initiation of propagation.

3. Initiation of propagation using projected
dynamics

3.1. Energy of the NLHE and the projected gradient
flow

For potentials v(x, ) with v(x,t) — 0 as |x| —
oc, energy E can be defined as

.
E= /(%v3+f(U))dx (13)

and the NLHE (4) may be written as a gradient flow
of the energy,

SE

b= (14)
where §E/Sv is the variational derivative. The gra-
dient flow structure of the NLHE has been used by
Fife and McLeod [17] to characterize sub- and super-
threshold initial conditions. These results, while rig-
orous, are qualitative in character. Here, the gradient
flow of the NLHE is projected onto a two-dimensional
approximate solution space formed by the amplitude
and | /width of a pulse. The resulting “projected dy-
namics” is a pair of the ODEs describing the tempo-
ral evolution of the amplitude and the width of the
pulse. As will be demonstrated in Section 4, this pro-
Jected dynamics, while nonrigorous, provides a good
approximation to the dynamics of the NLHE (4).

The starting point is a parametric representation of
the potential v(x, 1),

v(x.t) = V(a(t), x). forallzt, (15)

where a(t) = ay(1). ..., ay(t) is a time-dependent
vector of parameters. The derivatives of V with respect
to all ¢; are linearly independent as functions of x, so
none of the parameters g, (1) are redundant. Assuming
that the exact solutions of the gradient system (14) are
in the form (15), a system of ODEs for a(¢) is readily
derived.
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Given a parametric representation of v (15), the time
derivative v, can be expressed as

Uy =3jV&j. (16)

Here, 9; denotes differentiation with respect to a;,
overdot denotes differentiation with respect to time,
and there is a summation over the repeated index ;.
The gradient flow (14) implies

3dej:——, (17

where the functional derivative §£/5v is evaluated
with v = V(a. x). The form of (17) indicates that
SE /v is a linear combination of 8;V, j = 1,..., N.
To extract the ODEs for a; (), one must take the func-
tional inner product of (17) with 9;V,

o 005

E
/aiva,v dx dj:-/ga;‘/dx. (18)
) —oc

The right-hand side has a clear significance: Setting
v = V(a, x) in the total energy (13), E can be treated
as a function of a, E = E(a). It follows from the
definition of functional derivative that

X0
SE
3 E = — 9;Vdx (19)
sv
—00
and (18) becomes
oo}
/ 0;Vo;jVdx ) a; = —0;E. 20)

—0oC
In linear algebraic notation, (20) is
Ma = —VE, 2D

where the gradient operator is taken with respect to a
and M is the N x N symmetric matrix with compo-
nents

o0
m;; = / 8,'V3J'de‘ (22)
—oc

Eq. (21) is the required system of ODEs that represents
the dynamics of the gradient system (14).

3.2. Projected dynamics for the initiation of
propagation

In the application to a localized stimulation of a one-
dimensional fiber, an exact parametric representation
of the solution is not known. Hence, the form of V
in (15) must be an approximation. Consequently, the
ODE:s for the parameters will represent a projection of
the gradient flow (14) onto the approximate solution
space. In this study, the transmembrane potential v is
assumed to have a shape of a Gaussian pulse given in
(5). The rationale for choosing this particular form is
that for narrow pulses, (5) is an asymptotic solution
of the NLHE (4) (see Section 3.3). Of course, other
choices, such as a sech?(kx) that describes the critical
nucleus solution, could be similarly justified, but (5)
allows to determine the ODEs of (21) with a relative
ease.

The determination of the ODEs for the projected
dynamics will be carried out in the same asymptotic
limit 0 < u « 1 as the computation of the critical
nucleus presented in the previous section. When the
cubic polynomial (2) is approximated by quadratic (9),
the NLHE (4) takes the reduced form

U = Uy — (e — ). (23)

The threshold parameter can be removed from (23) by
adopting these units of the variables:

variable v X t
1 1

unit n o — - (24)
N/

Making replacements v — pv, x — x/,/u, and t —
t/u, the reduced NLHE (23) becomes

Up = Ueyx — V(1 — v). (25)

The explicit form of the projected dynamics (21)
based upon the Gaussian representation of v (5) is

@ = —aCk* + 1 — pa).

) 26
k = —k(2k* — qa). (20)
where p and ¢ are constants
—7\/5"*09526 —1\/5“‘02722
P=ev3z 70 47 3y3 70
@7
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Fig. 2. {a) The phase plane (a. k) of the projected dynamics
(26). The trajectories are drawn with solid lines, and the arrows
indicate the direction of increasing time. The ¢ =0 and k = 0
nullclines are drawn with dotted lines. A stable node R(0, 0)
corresponds to the rest state, and a saddle point N(1.47.0.447)
corresponds to the critical nucleus. The two stable manifolds
of N drawn with a heavy solid line form separatrices that act
as a threshold for propagation. Initial pulses to the left of the
separatrices decay to zero, and initial pulses to the right give
rise to propagating wavefronts. The unstable node 7(1.05, 0)
is the threshold for infinitely broad pulses (space-clamp). It is
slightly higher than the exact threshold @ = 1 because of the
Gaussian approximation of the pulse shape. (b) The evolution
of the pulse along four representative trajectories of the (a, k)
phase plane.

The phase plane of the projected dynamics (26) is
depicted in Fig. 2(a). It has a stable node R at (0, 0),
which corresponds to the rest state, and a saddle point
N at (1.47,0.447), which corresponds to the critical
nucleus. The stable and unstabie manifolds of the sad-
dle point N divide the trajectories into four groups.
Fig. 2(b) illustrates the evolution of the pulse along a
representative trajectory in each group. The two stable
manifolds of N, drawn with a heavy solid line in the
(a, k) phase plane of Fig. 2(a), divide the phase plane
into nonexcitable and excitable regions. Initial condi-
tions to the left of these separatrices lead to a — 0
as t — oo. These are the initial conditions that fail to
start propagation. Initial conditions to the right lead to
a — o0 in finite time. These are the initial conditions
that succeed in starting propagation, even though the
blowups themselves are not physical due to the trun-
cated form of the NLHE (25). Hence, these two sep-
aratrices together define a relation between amplitude
a and width 1/k corresponding to the threshold for
propagation. The & — oo limit of this curve is partic-
ularly significant, since it corresponds to initial stimu-
lations whose length scales are much shorter than the
length constant of the medium at rest. This case will
be examined in the next section.

3.3. Asymptotic limits for k — oo

In the limit k£, @ >> 1, the projected dynamics (26)
achieves the reduced form

a=—ak?— pa),  k=—k(2k*> —ga). (28)

Phase-plane trajectories of this reduced system are in-
tegral curves of the ODE

da a (2k* - pa
— 22, 2
dk & (Zkz—qa) 29)

This ODE is invariant under scalings of & and a which
preserve a/k?, so a new variable equal to a/ k? can be
defined. Eq. (29) expressed in terms of k and a/k? is
separable and its general solution readily determined.
In terms of a and k this solution is

a Q p a (p—q9Y/(p—2q)
- 1 4(P_ —] , (0
PR - [ +<2 9) K2 (30)
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Fig. 3. An example of a trajectory in the (a. k) phase plane
in the limit K — oc. The trajectory was computed from the
relation (30), and arrows indicate the direction of increasing
time 1. As k — oc, the trajectories approach one of the two
asymptotes, a o k or, for a/k* > 1, a « k772, Q denotes the
total charge delivered by the pulse.

where Q/./m is an arbitrary constant. As will be
shown below, dividing by /7 gives Q the physical
meaning of the charge delivered by the pulse. The
graph of this relation in the (a, k) phase plane for fixed
Q is depicted in Fig. 3 with the orientation determined
by increasing time ¢. The two k — oo asymptotes
are a « k. which corresponds to the linear heat equa-
tion limit, and @ o k’/2, which corresponds to a local
blowup of v. The rest of this section will discuss the
physical meaning and the significance of the a o« &
asymptote.

Consider the limit of a narrow pulse with X — oc
and k%2 > a. Then system (28) reduces further to
a~ —2k%a. k ~ =2k, (31
From (31), solutions for a(r) and k(7) can be obtained
as

a0~ k)~ (32)
JT 2Vt

where qp is an arbitrary constant. Inserting these a(z)
and k(1) into (5) gives

a0 . jar
v(x, 1) = —e = ", (33)
NG
which is the fundamental solution of the linear heat
equation,

Uy = Uxx- (34)

Now consider a corresponding limit applied to the re-
duced NLHE (25). Let 1/kq, kg >> 1, be the largest
scale in x. The scale of time that leads to the balance
of vy and vy, is 1/ ké. The magnitude of v is denoted
by ag. with the condition ap K k(’;. In this case, v, and
vy, are bath of magnitude kéag, and v(1 —v) has mag-
nitude a(z) which is much less than k%ao. Under these
conditions, the NLHE (25) asymptotically reduces to
the linear heat equation (34). Therefore, the Gaussian
pulse assumed in (5) as a parametric representation of
v is a bona fide asymptotic solution of the NLHE in
the limit &y — 00, ay K ké.

The Gaussian pulse solutions of the linear heat
equation (34) conserve total charge,

xX

0= /l!d.r"——’\/_%. (35)
—C
Returning to the phase plane (a, k) of Fig. 2, note that
as k — oc, the upper separatrix asymptotes to one of
the lines of constant charge Q = /7 a/k. Hence, in
a limit of a very narrow initial pulse, the criterion for
the initiation of propagation reduces to the condition
that all threshold pulses deliver the same total charge

Q.

4. Assessment of the results obtained with the
projected dynamics

The use of the projected dynamics (26) to investi-
gate the initiation of propagation results in a phase por-
trait (Fig. 2(a)) that confirms all the essential features
predicted by McKean and Moll [12}: The division of
the plane into sub- and super-critical data that are sep-
arated by a threshold curve and a motion of the phase
point along this curve to a saddle point corresponding
to the solution of the time-independent equation (6).
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Fig. 4. The comparison of the phase portraits of the projected
dynamics and the NLHE. (a) Solid trajectories are determined
from ODEs (26) and dashed trajectories from the reduced NLHE
(25). This phase plane contains two approximations of the
critical nucleus solution: the lower circle corresponds to the
saddle point (36) of the projected dynamics and the upper circle
corresponds to the exact critical nucleus (37). In both cases,
the width is measured as the e-folding distance; so k of the
exact critical nucleus solution is 0.461 rather than 0.5. (b) The
comparison of the two critical nucleus solutions shown in the
phase plane of Panel (a).

In addition, the projected dynamics, while nonrigor-
ous, produces a robust and a quantitatively good ap-
proximation to the true dynamics of the system. This
agreement is demonstrated in Fig. 4(a), which com-
pares the trajectories of the projected dynamics (solid
lines) with the trajectories computed by a numerical
solution of the NLHE (dashed lines).

The differences between these two sets of trajecto-
ries are the largest in the lower and the right parts of
the phase plane, i.e., where the actual solution of the
NLHE (25) is too broad or too tall to be well approx-
imated by the Gaussian pulse (5). This is clearly seen

when examining the @ o k’/? asymptote of Fig. 3,
corresponding to a local blowup of v. The relation
a o k72, determined based on the projected dynam-
ics, suggests that the blowup is described by a sim-
ilarity solution. This is true, but the exponent 7/2 is
spurious. The large discrepancy between the projected
dynamics and the NLHE trajectories indicate that the
shape cf the pulse near blowup is not Gaussian. The
correct relation between amplitude @ and width k near
blowup, obtained from the reduced NLHE (25), is a «
k% [18]. not a oc k2.

Fig. 4(a) shows that the projected dynamics
reproduces quite faithfully the position of the thresh-
old separatrix and the critical nucleus solution. Under
the projected dynamics, the critical nucleus has a
Gaussian approximation

Ve (x) 7o 1.47¢~ (0447307 (36)

As shown in Fig. 4(b), this approximation compares
favorably to the exact critical nucleus solution (11),
which after scaling (24) takes the form

Ver(x) = %sechz(%x). 37

The largest deviation between (36) and (37) is only
3.1% of the pulse amplitude.

As expected from the analysis presented in the pre-
vious section, the projected dynamics is most accu-
rate for narrow pulses. Since the Gaussian pulse (5)
is an asymptotic solution to the NLHE as a, k — oo,
the asymptote a o k of Fig. 3 gives a correct linear
relation between the amplitude and the width of the
pulse. If the pulse shape chosen in (5) were other than
Gaussian, the description of pulse dynamics by the
ODEs (26) for a(t) and k(¢) would be degraded in the
heat equation limit, but not badly. For instance, v =
a sech?(kx) might have been chosen since the critical
nucleus solution (37) takes this form with a = % and
k = % Constructing the ODEs for a and & based on
the sech? profile, one finds that in the heat equation
limit

4 . 12 N
e constant, where y = ATt = 0.908.
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The actual Gaussian pulse solutions of the linear heat
equation (34) conserve total charge Q (35), so the ex-
ponent y should be 1. A similar problem was encoun-
tered for the other asymptote of Fig. 3, for which the
projected dynamics gave an asymptotic relation a
k7/2 rather than the correct a o kZ.

The fact that all initial data that lie on the a, k —

oo limit of the threshold curve carry the same total
charge has been first recognized by Moll and Rosen-
crans [14] and Moll [15]. Using rectangular pulses as
initial data, the threshold curve was found numerically
and plotted as a log of the pulse amplitude versus log
of its width [15, Fig. 8]. For the amplitudes in the
range 0.5-1, the threshold curve is well approximated
by a line of slope —1. The value of threshold u in [15]
is 0.2 and the threshold charge Oy, estimated from the
graph is approximately 0.84. Moll also noted that as
the initial pulse evolves in time and approaches the
critical nucleus solution, its charge increases. In par-
ticular, in [15] the charge of v (x) is approximately
2.4, more than twice the charge of the threshold rect-
angular pulses of large amplitude.

The phenomenon of the constant total charge of the
threshold pulses and its smallness relative to the charge
of the critical nucleus can be easily explained using
the projected dynamics. As discussed in the previous
section, in the limit @, k — oo, the upper separatrix
asymptotes to a line of constant charge (35). With the
ratio a/k = 1.4, the threshold charge Oy ~ 1.4./7.
This estimate is scaled according to (24). The non-
scaled charge is a function of the threshold p,

On = VTi % =14 /7L (39)

For u = 0.2, O ~ 1.1, a value that is larger but
comparable to 0.84 estimated from Fig. 8 of [15].
The discrepancy is due to different initial conditions
(Gaussian versus rectangular pulses) and to the re-
duced, quadratic f'(v) used by the projected dynam-
ics. For 1 = 0.2, the Gaussian approximation of the
critical nucleus (36) has total charge of 2.47, larger
than the threshold charge and very close to the 2.4
estimate based on Moll’s results [15].

Aronson and Weinberger in their 1975 paper [13]
provided a method of estimating rigorous upper and
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Fig. 5. (a) The phase portrait of the time independent equation
(6) in the (v.vy) plane. (b) The illustration of the sufficient
condition for the supercritical pulse: The initial pulse vy(x)
must fit over v, (x), the solution of Eq. (6) that corresponds to
the trajectory shown in a heavy line in Panel (a). (¢) The (a, k)
phase plane showing in solid lines the boundaries of the sub-
and super-critical regions computed numerically according to
the Aronson and Weinberger estimates [13]. The dashed line
shows the true position of the threshold curve (same as the

dashed separatrices of Fig. 4(a)).

lower bounds of the sub- and super-critical region. The
rest of this section will compute these estimates for
the special case of Gaussian initial data and compare
them to the true threshold curve obtained from the
numerical solution of the NLHE.

The sufficient condition for supercritical initial data
given in [13] is based on comparison with solutions of
the time-independent NLHE (6). Its first integral (7)
gives the phase portrait shown in Fig. 5(a). If («, 0) is
the turning point of the homoclinic orbit, then choos-
ing a turning point (r, 0), k < r < 1, defines a unique
trajectory of the (v, vy) plane (heavy line in Fig. 5(a)).
The solution of (6) corresponding to this trajectory,
vr(x), has a global maximum r at x = 0. The dashed
line in Fig. 5(b) shows a portion of this solution with
v, (x) > 0. Given the sequence of v, (x), x <r < 1,
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the Aronson and Weinberger criterion can be stated as
follows: The initial data vy(x) is supercritical if there
is r, k < r < 1, for which the positive portion of
vy (x) lies underneath vy (x). This situation is depicted
in Fig. 5(b) and the numerically determined approxi-
mation of the supercritical region is shown in Fig. 5(c).

The sufficient condition for subcritical initial data
can be expressed as follows. Given f’(v) as in (2),
define

S(p) = max —S )
u<v<l V—p

in0<p<u. (40)

An initial distribution vg(x) is subcritical if for some
p,0<p<u,

B
2

fmmw—pr< —— (. — p), 41)
eS(p)

where ¢ < x < B is the interval where vg(x) > p.
Substituting for vo(x) a Gaussian pulse, (41) defines a
region in the (a. k) plane corresponding to subcritical
initial data. A numerically determined boundary of
this region appears in Fig. 5(c).

The comparison of the sub- and super-critical re-
gions computed according to Aronson and Weinberger
[13] with the threshold curve determined by the nu-
merical solution of the NLHE (solid line on the phase
plane of Fig. 5(c)) shows that these estimates are very
conservative, especially in the limit of tall and nar-
row pulses, a, k — oc. For the subthreshold condition
(41), this limit can be examined directly and without
the restriction to Gaussian initial data. Specifically,
take

vo(x) = é v (g) (42)

where V (x) is a positive integrable function and ¢ is
a small positive number. In the limit &¢ — 0, the left-
hand side of (41),

B x
/(UO(X) —p)dx — / Vix)dx, (43)

becomes independent of p and, according to (35), rep-
resents the total charge Q delivered by the pulse. The
right-hand side of (41) achieves its maximum at p =

0, with S(0) = 1/4 (1 — u)*. Hence, the £ — 0 limit
of (41) is

Q<\//§_N— H

44
e (1 —uw) @9

and states that a tall and narrow pulse is subcritical if
its charge is sufficiently small.

The notion of the constant threshold charge, im-
plied by (44), agrees with the results obtained in our
study and in [14,15]. However, according to (44), in
the limit &£ — 0, Qy, is proportional to . The cor-
rect relationship (39), which was obtained using the
projected dynamics, states that Qy, is proportional to
/1. This is the reason why in Fig. 5(c), the bound-
ary of the subcritical region departs from the actual
threshold curve as the initial pulses become narrow.
The increasing gap between the threshold curve and
the boundary of the supercritical region can be simi-
larly analyzed. In the ¢ — oo limit, the boundary of
the supercritical region is given by a/k? — constant.
This constant depends on wu, but converges to a pos-
itive value as u — 0, causing the departure of the
estimate from the actual threshold curve.

5. The role of the inactivation variable

The results presented in the three previous sections
were obtained under the simplifying assumption that
the inactivation variable y remained at its rest state
and that the transmembrane potential v satisfied the
reduced NLHE (25). This section re-introduces y into
the model and examines its role in initiating propa-
gation. In the limit of a small threshold & — O, the
natural unit of y that is consistent with the units of
v, x, 1 in (24) is pu?. Making replacements (24) and
v — w2y, the FN model (1) takes the form

U=t —v(l—v) — . Vi=—v =&y

(45)

In the limit © — 0, ¢ — 0 with. e/u fixed, (45)
reduces to

v =¢e'v, (46)

v = Uxx —U(l —v) — v,
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Fig. 6. The phase plane (a. k) of the reduced FN model (46). Panel (a) shows trajectories that originate away from the separatrices.
Panel (b) shows two trajectories that originate very close to the upper separatrix and initially approach the critical nucleus. Panel
(c) shows two trajectories that originate very close to the critical nucleus solution. In (b) and (c), the difference in the amplitude
of the initial pulse between the trajectory that decays and the trajectory that blows up is 10, Panel (d) shows the slow phase of
the trajectories computed from Eqs. (49). In all panels, circles indicate positions of the rest state, the membrane threshold, and the
critical nucleus solution (as in Fig. 2). Dashed lines show the representative four trajectories taken from Panel (a). The lower part
of the graphs is left blank because, for small k, pulses become sufficiently broad to interfere with the ends of the fiber.

where ¢’ = ga/u = 0.21, which can be considered
small. This reduced FN model was solved numericaily
with the initial conditions

v(x,0) = a(O)e‘(k(o)X)z, ¥(0) =0. (47)

The amplitude and the width of the evolving pulse
were measured at each time step and used to construct
the trajectories on the (a, k) plane (Fig. 6).

Fig. 6(a) demonstrates that the general features of
the (a, k) phase plane are the same, with or without the
inactivation variable. As before, there are four types
of trajectories, and most of them are not significantly
affected by the presence of the inactivation variable.
For initial conditions away from the ingoing separa-
trices of the phase plane in Fig. 2(a), v(x,t) either
decays to zero or blows up so rapidly that y under-
goes little change from zero during the entire process.
Hence, these evolutions are well described by the pro-
jected dynamics (26): Trajectories obtained from the

numerical solution of the FN model (Fig. 6(a)) are in-
deed similar to trajectories of the projected dynamics
phase plane (Fig. 2(a)).

The situation is drastically different for initial con-
ditions near the ingoing separatrices of the phase plane
in Fig. 2(a). Fig. 6(b) shows trajectories of the solu-
tions in the (a, k) plane for two of these initial condi-
tions. There is a rapid initial approach to the critical
nucleus solution. Next, the phase point slowly drifts
away, tracing out a curve that does not correspond to
any trajectory in the phase plane of Fig. 2(a). This
slow phase is unstable: After a duration of time which
is extremely sensitive to the initial conditions, there is
either a rapid decay of amplitude to zero or a blowup.
Fig. 6(c) shows two trajectories that start very near the
critical nucleus solution. Again, the phase point slowly
drifts away from the critical nucleus and, depending
on the small difference in the initial conditions, v(x, t)
eventually decays or blows up.
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Fig. 7. The panel in the upper left corner shows the phase pl
away from the separatrices and one trajectory that originates at

ane (a. k) of the FN model (46) with four trajectories that originate
the critical nucleus solution. On this trajectory, dots mark the instants

of time = 1,2,3.....7. The remaining panels show spatial distribution of potential v (solid) and inactivation variable y (dashed)

at times r =1.2,3....,7 and 8.

Fig. 7 shows a time sequence of configurations
v(x, 1), y(x.r) starting from initial conditions very
near the critical nucleus solution. The time frames 7 =
1. ..., 6 correspond to the slow phase in which y un-
dergoes a slow but cumulative growth according to the
second equation of (46), and v simultaneously adjusts
to the slowly changing y. The latter consists of a mod-
erate growth in a and k. The time frames t = 7, 8 of
Fig. 7 show a rapid collapse of v(x,¢) from a posi-
tive amplitude to a smaller negative amplitude. If the
simulations were continued further in time, v and v
would be observed to return to zero with the slow time
constant 1/¢’. As shown in Fig. 6(c), a slight increase
in the initial condition would have led to a blowup
instead of a collapse.

The brief inspection of Fig. 6 reveals that tracking
the slow phase by direct numerical solutions of the
reduced FN system (46) is difficult because the slow
phase is highly unstable. A reduction of (46) under the
limit /4 — 0 eliminates the rapidly growing devia-
tions and allows to compute a simple approximation
to the entire trajectory of the slow phase in the (a, k)

plane. From (46), the time scale associated with the
growth of y is 1/&’. Adopting 1/&’ as the unit of time,
(46) transforms into

v = v —v(l —v) —y, v, = . (48)

In the limit ¢ — 0, Eqs. (46) reduce further to a
system

Vee —u(l —v) =y, V= 1. 49)

which governs the slow phase. Fig. 6(d) depicts the
numerical solution of the reduced system (49) starting
from initial conditions equal to the critical nucleus so-
lution (37). The resulting trajectory in the (a, k) phase
plane approximately coincides with the slow portion
of the trajectory in Fig. 6(c).

6. Discussion

The criterion for initiating propagaiion that emerges
from this paper is that threshold pulses define a curve
in the amplitude, width plane. Once the pulse width is
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chosen, this curve determines the minimum amplitude
of the pulse necessary to start propagation. Thus, the
infinitely broad pulses (e.g., the space-clamped fiber)
require an amplitude equal to the membrane excita-
tion threshold w. As the width of the pulse decreases,
the requirement on the amplitude grows. In a limit of
very narrow pulses, the pulse width and the amplitude
are related by a linear relationship corresponding to a
requirement that a constant amount of charge be de-
livered by the pulse.

This study found no indication of the existence of a
liminal length, i.e., the minimum length of a fiber that
the stimulus must raise above the threshold in order to
initiate the propagation. On the contrary, the ingoing
separatrices of the (a, k) phase plane bisect all pulse
widths, and this indicates that, in theory, one should
be able to start propagation with an arbitrarily narrow
pulse as long as it carries a threshold charge. Thus, the
liminal length does not appear to be an intrinsic prop-
erty of the mechanism by which an external stimulus
initiates propagation.

In the paper by Noble [11] the liminal length is de-
fined as the width of the critical nucleus solution that
is above the membrane excitation threshold u. Note
that the trajectories that originate close to the separatri-
ces initially approach the critical nucleus (Fig. 2). For
trajectories below the unstable manifold, pulses start
broad and become narrower before they either decay
to zero or blow up to infinity. For trajectories above
the unstable manifold, the pulses start very narrow and
broaden before they either decay or blow up. This may
explain the existence of experimental data that agree
with the liminal length hypothesis [9,10]. However, if
the initial conditions are away from the separatrices,
then the pulses, both broad and narrow, can develop
into a propagating wavefront without approaching the
critical nucleus solution. Hence, the agreement of ex-
perimental data with the liminal length hypothesis may
be an artifact of the way by which the external stim-
ulus was applied.

The results obtained in this paper required mak-
ing several simplifying assumptions. The excitable
medium was approximated by a one-dimensional fiber
with an idealized dynamics based on the FN model.
The external stimulation was represented by initial

conditions on potential, thus assuming that the elec-
trode charges the fiber instantaneously. In contrast,
pulses used in clinical and experimental pacing have
typical durations 0.1-2 ms [19], and representing them
by initial conditions neglects the processes occurring
during the pulse. Furthermore, the distribution of po-
tential was assumed to have a Gaussian shape which is
a close, but not an exact, representation of the poten-
tial established by point electrodes. Gaussian shaped
pulses are also not a good representation for large
electrodes that have edge effects associated with them
[20]. Hence, the trajectories in the part of the phase
plane corresponding to small & may depart from re-
ality. However, limitations resulting from assuming
Gaussian initial data will cause only a quantitative dis-
agreemen! with the real process. As demonstrated by
McKean and Moll [12], the qualitative features, such
as the existence of the threshold separatrices, should
hold true for any initial distribution of the transmem-
brane potential, as long as the pulse carries a finite
charge. Finally, the FN dynamics was simplified by
approximating the cubic nonlinearity by quadratic and
thus neglecting the existence of the stable excited state.
In consequence, the trajectories in the right part of the
phase plane indicate that the amplitude increases with-
out bounds instead of settling down to a steady state
corresponding to the plateau of an action potential.
Despite these simplifications, the essential features
of the initiation of propagation obtained with the sim-
plified model remain true for more realistic models.
As demonstrated in Section 4, the introduction of the
inactivation variable y and solving the FN model nu-
merically gives a phase plane (Fig. 6) which, with the
exception of trajectories extremely close to the sep-
aratrices, does not differ appreciably from the phase
plane of the projected dynamics (Fig. 2). Moreover,
the same general features are also seen in the physio-
logically based models of the membrane. Fig. 8 shows
the (a, k) phase plane obtained with the Luo—Rudy
(LR) model of cardiac membrane {21]. One can clearly
distinguish the same four types of trajectories. Also,
the initial conditions that decay to zero and the initial
conditions that lead to a propagating wavefront oc-
cupy nonoverlapping parts of the (a, k) phase plane.
Thus, they indicate the existence of separatrices akin
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Fig. 8. Initiation of propagation in a physiologically based model
of the membrane. The trajectories were obtained using the
Luo—-Rudy model of cardiac membrane and drawn on the (a. k)
phase plane. The amplitude is measured with respect to the rest
potential, —84 mV. Therefore, the origin R(0, 0) corresponds
to the rest state of the fiber. The trajectories turn either to
the left (decay) or to the right (propagation), indicating the
existence of separatrices that act as a threshold for propagation.
Point 7(25.8.0) denotes the threshold for the space-clamped
Luo—Rudy membrane.

to those obtained with the projected dynamics. This
qualitative agreement gives a reason to believe that
the simplified analysis presented in this paper captures
the essence of the mechanism by which local stimuli
initiate propagating wavefronts.

Appendix A. Numerical simulations

In this paper, the values of the parameters, u =
0.13, ¢ = 0.0094, and @ = (.37. were chosen to make
system (1) equivalent to the equations in the original
FitzHugh paper [1] (with FitzHugh’s parameter ¢ = 5
to enable propagation).

The phase plane of Fig. 2, corresponding to the pro-
jected dynamics (26) was constructed in the following
way. ODEs (26) for a and k were solved using the
forward Euler’s method [22] with the time step dt =
0.01. The trajectories were followed until a, k, or time
reached a predetermined value.

The phase planes of Figs. 4 and 6 and the spatial dis-
tributions of v and v of Fig. 7 were constructed based
on a one-dimensional fiber model of length L = 10

with the sealed-end boundary conditions. The evolu-
tion of v was computed from the reduced NLHE (23)
with initial conditions (5). The evolution of v and y
was computed from the reduced FN model (46) with
initial conditions (47). A PDE for v was solved us-
ing the method of Crank—Nicolson [22], and the ODE
for y was solved using the forward Euler’s method.
A time step dr = 0.01 was used, and the fiber was
discretized with dx = 0.01.

To determine the boundary of the supercritical
region shown in Fig. 5(c). a sequence of time-
independent solutions to the NLHE v, (x) was deter-
mined from the following initial value problem:

Uy — f(v) =0, v, (0) = 0, v(0) = r.

(A.1)

The solutions of (A.1) were computed numerically us-
ing the NDSolve function of Mathematica [23]. Once
a sequence of v,(x), 0.2 < r < 0.95, was available,
values of a and k were chosen and a Gaussian pulse
(5) was generated and compared with all v,(x). The
value of a was kept constant and k was interactively
adjusted, until a narrowest pulse was found that ex-
ceeded at least one of the v, (x) functions (Fig. 5(b)).

The boundary of the subcritical region were com-
puted from estimate (41). Assuming the limit & — 0,
function S(p) was simplified to

Sy~ 31—+ p)°. (A2)

Using (A.2) and a Gaussian pulse (5) as vg(x), (41)
takes the form

xo(p)
)2 /8 —
(ae”*" — pydx </ il LL (A.3)
Ve l—u+p
—xp(p)

where xg(p) = +/In(a/p)/k and 0 < p < w. For in-
teractively chosen values of a and k, (A.3) was eval-
uated using Mathematica [23].

The slow phase of the trajectories, shown in
Fig. 6(d), was computed using the same one-
dimensional fiber model. The evolution of v and y
was computed from Egs. (49) with initial conditions
equal to the critical nucleus solution (37). The bound-
ary value problem for v was solved at each time step
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using the iterative method of Newton-Raphson [24].
The ODE for y was solved using the forward Euler’s
method. The discretization steps were df = 0.05 and
dx = 0.05.

The phase plane of Fig. 8, corresponding to the LR
model, was constructed based on the one-dimensional
fiber model of length lcm and of radius 10 pm.
Membrane capacitance Cp, was | wF/cm?, and in-
ternal resistance R; was 0.47 k{2 cm [25]. Sealed-end
boundary conditions were imposed at the ends. Ini-
tial conditions assigned to the gating variables cor-
responded to their rest states. The initial condition
on v was the rest state potential of —84 mV plus a
Gaussian pulse (5). A PDE for v was solved using the
method of Crank—Nicolson, and ODEs for the gat-
ing variables were solved using the forward Euler’s
method. The time step was df = 0.0l ms, and the
fiber model was discretized with dx = 0.00025 cm.

Solutions of the NLHE and of the FN and LR mod-
els are not truly Gaussian. In order to draw the trajec-
tories on the (a.k) phase plane, at each instant of time
the amplitude a was taken as the maximum height of
the pulse and the width 1/ was taken as the e-folding
distance.
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