N,

= PHYSIGA !

Physica D 76 (1994) 359-368

SLSEVIER

Vulnerability in excitable Belousov—Zhabotinsky medium: from
1D to 2D

M. Gbémez-Gesteira, G. Fernandez-Garcia, A.P. Munuzuri, V. Pérez-Munuzuri,
V.I. Krinsky', C.F. Starmer?, V. Pérez-Villar

Group of Nonlinear Physics, Facultade de Fisica, Universidade de Santiago de Compostela,
15706 Santiago de Compostela, Spain

Received 26 May 1993; revised 1 February 1994; accepted 3 February 1994
Communicated by AV. Holden

Abstract

Mechanisms for initiating rotating waves in 1D and 2D excitable media were compared and parameters affecting
wavefront formation were analyzed. The time delay between two sequentially initiated wavefronts (a conditioning
wave followed by a test wave) was varied in order to induce rotating waves, a protocol similar to that utilized in
cardiac muscle experiments to reveal vulnerability to rotating wave initiation.

We define the vulnerability region, VR, as the range of time delays between conditioning and test waves where
the test waves evolves into a rotating wave. The smaller the VR, the more resistant the heart is against origination
of dangerous cardiac arrhythmias. Heterogeneity of cardiac muscle is widely recognized as the prerequisite for
rotating wave initiation. We have identified the VR in homogeneous 2D excitable media. In the Belousov—
Zhabotinsky (BZ) reaction with immobilized catalyst and in the Oregonator model of this reaction, a properly
timed test wave gives rise to rotating waves. The VR was increased when the size of the perturbation used for test
wave creation was increased or when the threshold for propagation was decreased. Increasing the dimensionality of
the medium for 1D to 2D results in diminishing of VR.

tion of a medium have attracted for years the
interest of scientists in different fields. Heart
muscle [6], retina [7] and cultures of the slime
mould Dyctiostelium Discoideum [8] constitute
classical examples of spiral appearance in excit-
able media. While the importance of spiral waves
in some of these preparations is unclear, in

1. Introduction

During the last two decades different ap-
proaches have been used to explain the appear-
ance and existence of spiral waves [1-5]. Phe-
nomena relative to the excitation and re-excita-
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cardiac tissue, spiral waves reflect self-main-
tained activation that can degenerate into poten-
tially life-threatening arrhythmias.

Vulnerability of cardiac muscle to initiation of
reentrant arrhythmias is usually experimentally
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determined using the following stimulation
protocol. Two sequential electric pulses (con-
ditioning and test) are delivered to the cardiac
preparation and the parameter region (time
delay, stimulus amplitude, etc.) where rotating
waves are created is measured. In these experi-
ments three classes of responses are typically
found. (1) When the interval between condition-
ing and test pulses is much longer than the
restoration time (called refractoriness in cardiolo-
gy) both pulses initiate wavefronts that prop-
agate in all directions (we will call this a class 1
response). (2) When the interval between the
pulses is shorter than the restoration time, only
the first pulse initiates a propagating response
(we will call this a class 2 response). (3) When
the interval between the pulses is slightly larger
(several percent) than the restoration time, the
test pulses elicit a train of responses (we will call
this a class 3 responses). Initiating a train of
responses by properly timed stimuli is called
vulnerability and the range of delays between the
conditioning and the test wave is called the
vulnerable region (VR). The larger the VR, the
less resistant the cardiac muscle to cardiac ar-
rhythmias initiation.

Initiation of these rhythms by specific stimula-
tion protocols was well known within the area of
cardiac electrophysiology. However, only recent-
ly have the detailed mechanisms for initiation
been studied. Allessie et al. [6] demonstrated the
initiation of rotating waves in cardiac tissue by
means of vulnerability experiments. However,
the determinants of the VR have not been
characterized, in spite of the variety of ap-
proaches carried out during the last decade [9—
12].

Keener and Phelps [13] described numerically
this mechanism for the FitzHugh—Nagumo and
Beeler—Reuter models. They came to the con-
clusion that vulnerability was a characteristic of a
discrete anisotropic cellular medium where the
wave fails to propagate in one direction (weak
coupling), leading to a permanently rotating
wave. In their model for a continuous medium,

the response either fails to propagate in al
directions or propagates in all directions, i.e
there is no possibility for spiral wave initiation.
We have found a vulnerable region similar t
that described in cardiology in a 2D continuou
Belousov—Zhabotinsky (BZ) [14] reaction, an
have explored the parameters that control th
VR. We have found both numerically and ex
perimentally that the VR can be reduced b
increasing the excitability of the system or b
increasing the dimensionality of the medium.

2. Experimental setup

The experiments were performed in a B!
medium, where the catalyst (ferroin 0.008 M
was immobilized in a silica gel [15]. The gel we
1 mm thick in a Petri dish of 6.1 cm in diamete:

" The petri dish was filled with the followin

recipe: 1/6 M CH,(COOH),, 1/6 M NaBrO.
and various H,SO, concentrations to get diffe:
ent excitabilites [16] in the system. The depth ¢
the liquid layer was greater than 5 mm to prever
any interference between the oxygen in the a
and the BZ reaction. The experiments wei
performed at room temperature (25 = 1°C).

Once a wave (conditioning wave) passed
given point by a known distance, the mediw
was stimulated at the point by touching the g
with a silver wire [17] (0.3 mm in diameter), f
a period of 5 seconds. Due to the uncertainty :
the position of the stimulus (a result of the fini
thickness of the silver wire), the experimen
were performed several times under the sanm
conditions in order to achieve an adequa
statistical sample.

All the experiments were followed with
CCD camera and recorded on a videotap
Digital image processing was carried out.

Similar experiments have been carried o
using a liquid system [18]. A gel system presen
several advantages that permit the study of the
phenomena with high accuracy. In the gel sy
tem, the interaction between oxygen and the B
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reaction is avoided, as the gel is covered by a
liquid layer and the mechanical disturbances
created by the electrode in the liquid layer do
not affect the waves appearing in the reaction. In
addition, convection is also avoided. Only in the
gel system can quasi two-dimensional pulses be
generated (as silver wire only touches the upper
surface of the gel).

Thus, it is possible to separate 2D from 3D
effects. By varying the thickness of the gel it is
possible to study the transitions from 2D to 3D
[19].

3. Model

Simulations were performed with the two-
variable version of the Oregonator model [20]
using Tyson’s “Lo” parameters [21]. The equa-
tions for a two-dimensional medium are:

a”_l 2 (u-—q))

at——g(u—u fv_—_—_(u-%q) + D, Au,

v

il ‘ (1)

where u is the propagator variable representing
the dimensionless concentration, [HBrO,], and
v, the recovery variable, is the dimensionless
concentration [ferriin]. f, ¢ and ¢ are parameters
determined by the kinetics of the BZ reaction.

The diffusion coefficient of the recovery vari-
able was considered to be zero to mimic the
propagation of waves in a silica gel, where the
ferroin was immobilized.

All simulations were performed with g = 0.002
and f=3.0, in such a way that the nuliclines
intersected at a single point. This point was
placed in the stable branch, which constitutes an
excitable system.

Both in the 1D and in the 2D studies, the
mesh size and the time step were considered to
be 0.16 and 107> respectively, and the system
rescaled to have a diffusion coefficient D, = 1.

The set of equations (1) was solved by using
an Euler method, where the Laplacian operator

was discretized by means of finite differences
(using two neighbours in 1D and four in 2D).
Von Neuman boundary conditions were used in
both calculations.

The technique used to simulate the experimen-
tal mechanism was as follows: the control point
(p.) was placed at a given grid point. When the
maximum of a wave arrived at that position,
time was reset to zero and a given time delay (¢,)
was fixed by the computer before introducing a
perturbation in the u variable. This perturbation
was established at p_ and at its closest neighbours
(5 grid points in 1D and 5 X 5 in 2D). In general,
the amplitude of the perturbation was fixed to
the maximum value of u in the wave. Several
behaviours, depending on the value of 1,, were
observed as explained in the following section.

4. Results

The three classes of responses described in the
introduction were observed in experiments with
the BZ reaction. We observed that a pulse
delivered after a conditioning wave with a delay
larger than the refractoriness (restoration) period
propagated in all directions; for short delays, no
response was observed; and for intermediate
delays, a wavefront propagated in some direc-

-tions and failed in others (broken wavefront).

This phenomenon is illustrated in Fig. 1. In
Fig. 1a, a conditioning wave and responses to
two test stimuli (s1,s2) delivered at different
distances (different time delays) from the con-
ditioning wave are shown.

The s1 response evolved into a circular wave,
while the s2 response evolved into a pair of
spirals (Fig. 1b). The same behaviour is shown in
figs. 1c,d for the Oregonator model.

When the numerical approach was carried out
in a 1D excitable medium (analog to a nerve or
cardiac fiber), the three classes of responses
previously mentioned were obtained once again.
(1) Delays larger than the refractoriness period
resulted in wavefronts propagating away from
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Fig. 1. Vulnerability in 2D. (a) Two stimuli were delivered to the BZ reaction (dark points marked sl and s2) by touching it with
a silver electrode (seen at the left). The arrow shows the direction of propagation of the conditioning wave, CW. Stimulus s1 was
delivered 190 seconds after CW passage through that point, and stimulus s2 160 seconds after CW. (b) Image taken 285 seconds
later than (a). Stimulus s1 gave rise to a circular wave and stimulus s2 to two spirals. Initiation of spirals corresponds to the
vulnerability phenomenon in cardiac muscle. (The recipe is given in the text, here H,S0, was 1/12M). (¢}, (d) The same
behaviour in the Oregonator model (parameters f=3.0, £ =0.05, ¢ = 0.002).




the stimulation site in both directions. This is
qualitatively similar to 2D —in 2D a circular
wave was initiated, while in 1D the result is two
pulses propagating in opposite directions. (2)
For short delays no response was observed
(exactly the same as in a 2D medium). (3) For
intermediate delays, the result was a wave prop-
agating away from the stimulation site in the
direction opposite to the conditioning wavefront
(similarly to 2D, where propagation failed in
some directions, resulting in a discontinuous
wavefront).

This is shown in Fig. 2. In panel (a), the time
delay for delivering the test pulse (s1) is large,
and the response propagates in all directions. In
panel (b), the time delay is short enough and the
test response propagates only in the direction
opposite to the conditioning wavefront.

The most interesting difference between 1D
and 2D was the evolution of different patterns of
propagated responses we observed when a pa-
rameter (the time delay) was progressively in-
creased. In 1D, the transition from no propaga-
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tion (class 2 described in the introduction) to
unidirectional propagation (class 3) and then, to
bidirectional propagation (class 1) was observed
and each class of response was invariant with
respect to time since wavefront initiation.

We expected that in the 2D medium, a similar,
time-invariant, sequence of patterns would be
observed as the time delay was increased: no
propagation (class 2) followed by discontinuous
propagation (class 3) and then propagation of a
continuous wavefront (class 1). But, as seen in
Fig. 3, increasing the time delay resulted in
another sequence: no propagation, a continuous
circular wavefront, spiral and, again, a circular
wavefront. Responses to excitation within the
VR associated with class 3 of wavefronts were
observed to evolve into two different patterns: a
circular wave and a pair of spiral waves. The
underlying mechanism is the well known effect
of merging and annihilation of rotating waves
when they are spaced too close one to another.

The different evolution of the broken waves

0 1000 2000 3000 4000 5000
) Time
Fig. 2. Analog of vulnerability in 1D. Two stimuli were
delivered in a way similar to the ones shown in Fig. 1. The
time delay between the conditioning wave and the stimulus,
s, was 2.361 time units (t.u.) in (a), and 1.861 t.u. in (b). The
stimulus s1 in (a) propagated in both directions (corre-
sponding to a circular wave in 2D), while the stimulus s2 in
(b) propagated unidirectionally (corresponding to a broken
wavefront in 2D, which can generate a pair of spirals in the
VR). A projection of the u variable behaviour is shown
(Oregonator model parameters f= 3.0, ¢ =0.05, g = 0.002).

was related to the spatial size of the test per-
turbation. This size was numerically modified
(Fig. 3), both in the direction parallel to the
movement of the conditioning wavefront (P)
and in the perpendicular one (P,).

The region of vulnerability increased when the
size of the perturbation was increased. The
quantitative behaviour was different for X and Y
directions (Fig. 3). The increase of the spatial
size (P,) of the perturbed region increased the



Time Delay (t.u.)
25

Circular Wave b
° \\——Aﬁ—
278 Spiral

26k Circular Wave

225

No Propagation

1'75 i Ll i ) L
o] 0.78 15 2.25 3 3.75 4.5

364 M. Gémez-Gesteira et al. | Physica D 76 (1994) 359368
Time Delay (t.u.)
3.25
a
Circular Wave
3 -
Spiral
2.75F
Circular Wave
2.5
2.25+
No Propagation
2 L. i 1 1
0 0.25 0.5 0.75 1 1.26

(Px) Perturbation Size (s.u.)

(Py) Perturbation Size (s.u.)

Fig. 3. Effect of the size of the stimulated region on the vulnerability in 2D (numerically simulated in the Oregonator model). (a)
The dependence on the size of the perturbation in the X direction, P, (perpendicular to the conditioning wavefront). The region
of vulnerability (spiral formation) increases when P_ is increased (P, was kept constant, P, =0.80 spatial units (s.u.)). (b) The
dependence on the size of the perturbation in the Y direction, P, (parallel to the conditioning wavefront). The region of
vulnerability also increases when P, is increased. The increase is not regular: for small and big values of P, small changes almost
do not affect the region of vulnerability. For intermediate values of P, (between 2.4 and 3.0 s.u.), small changes in its value
produce significant changes in the region of vulnerability (P, was kept constant, P, =0.80 s.u.) (Oregonator model parameters

f=3.0, £ =0.06 and g = 0.002).

distance between the two wavebreaks. This per-
turbation separated the two initiating spirals by
enough distance such that they could evolve
without annihilation. The increase of the spatial
size (P,) of the perturbed region increased the
probability of having a part of the perturbation
within the VR.

In Fig. 4, we plot the evolution of responses
for different perturbation geometries. Increasing
the perturbation size in any direction resulted in
spiral wave formation (for a small size of the
perturbation, only circular waves were Ob-
served).

Dependence of VR on the excitability of the
medium is shown in Figs. 5 and 6. The region of
vulnerability decreases as the excitability of the
medium is increased. The two regions of circular
waves were observed in the 2D case both ex-
perimentally and numerically (Figs. 5 and 6b).

5. Discussion

Disturbing the BZ reaction has often been
used to initiate spiral waves. The nature of the
disturbance and the resultant response, however,
has received little attention. While this question
has been overlooked in studies of chemical
reactions, the question has received considerable
attention within the cardiology community
[6,9,10,12,13] — primarily because the initiation
of a spiral pattern of excitation in the heart can
lead to disturbances in cardiac rhythm that result
in sudden cardiac death.

To establish a frame of reference, we have
defined vulnerability as the ability to establish a
discontinuous wavefront —i.e. a wavefront that
propagates in some directions and fails to prop-
agate in other directions relative to a stimulation
site.
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. Fig. 4. Evolution of wave patterns for different sizes of the stimulated region (numerically simulated in the Oregonator model).
In panels (a) to (c), the evolution for a squared perturbation, s1, (s1 = (P, =0.80, P,, =0.80) s.u.) is shown, for instants ¢ =0,

t=2.5 and r=35.0 t.u. The result is a circular wave. In panels (d) of (f), the evolution for a rectangular perturbation, s2, oriented
in the X direction, (s2 = (P,, = 1.44, P, = 0.80) s.u.), for the same instants, is shown. The result is a discontinuous wavefront that

\ )

evolves in a pair of spiral waves. In panels (g) to (i), the evolution for a rectangular perturbation, s3, oriented in the ¥ direction
(s3=(P,;=0.80, P,, =2.40) s.u.), for the same instants, is shown. The result is a discontinuous wavefront that evolves in a pair
of spiral waves. (Oregonator model parameters f= 3.0, £ = 0.06 and g = 0.002).

Our results extend observations in Spach’s
experiments on vulnerability in cardiac muscle
and Keener’s theoretical analysis. We have
shown that the phenomenon of vulnerability is

not exclusive for discrete systems, and the exist-
ence of propagation failure in discrete systems is
not a general explanation. We have found that
the mechanism responsible is the generic be-
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Fig. 5. Excitability effect on vulnerability (in BZ experi-
ment). Time delay is plotted versus the excitability of the
medium, which is proportional to the sulfuric acid con-
centration. The vulnerability region (spiral formation) de-
creases when the excitability of the system is increased.

haviour of excitable systems, and rotating spiral
waves can be obtained in a continuous system
with isotropic diffusion coefficients (this is the
case in BZ, but not in cardiac muscle).

It was earlier suggested [18] that vulnerability
can be observed in the BZ reagent. A liquid-
phase reaction was used in this experiment,
which is inevitably heterogeneous: due to the
inhibitory effect of oxygen, the excitability in-
creases with depth of the medium. To overcome
this difficulty, catalyst immobilized in a gel was
used in our experiments. In this case, the
medium is homogeneous (no changes of ex-
citability with the depth), and at the same time,
convention effects due to the silver wire intro-
duction into the liquid layer were avoided. In
addition, it permitted us to obtain a quasi
bidimensional contact between the gel and the
silver wire used to deliver the stimuli.

We found that disturbing the BZ reaction
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Fig. 6. Excitability effect on the vulnerability (numerically
simulated in the Oregonator model). Time delay is plotted
versus the excitability of the medium, which is proportional
to 1/e in the model. (a) 1D. The vulnerability region
(unidirectional propagation) decreases when the excitability
of the system is increased. (b) 2D. The vulnerability region
(spirals formation) also decreases when the excitability of the
system is increased. Note that the increase of the dimen-
sionality results in the diminishing of the diminishing of the
VR and the qualitative agreement between Figs. 6b and 5
obtained numerically and experimentally. The size of the
perturbation both in X and in Y directions was P, = P, = 0.80
s.u. and the parameters in the Oregonator model f =3.0 and
g = 0.002.



M. Gémez-Gesteira et al. | Physica D 76 (1994) 359-368 367

produced either continuous or discontinuous
(broken) waves. The discontinuous fronts
eventually evolved into either a pair of spirals (at
the points of discontinuity) or, if the distance
between points of discontinuity was too small,
wavefront continuity was re-established and a
circular wave resulted. This is related to the fact
that, when the free ends (tips) of two spirals are
situated too close, they collide and annihilate
giving rise to a continuous wavefront. Thus, a
critical distance between the free ends of a
broken front is required to evolve into a pair of
spirals, and this distance is increased with the
perturbation size.

The difference in the evolutionary patterns
associated with the discontinuous wavefront was
related to the size of the stimulus perturbation
relative to the direction of propagation of the
conditioning wavefront. Increasing the size of
the perturbation in the direction parallel to the
conditioning wave, P, resulted in an increase of
the VR because this perturbation increased the
distance between the two wavebreaks. In this
case, the two free ends of a broken wave evolved
into a pair of spirals (while with a smaller size P,
of the perturbation, they evolved into a continu-
ous wave 3b). Note (Fig. 3b) that the increase of
the VR is not monotonic in P,. Thus, for small
and big values of P,, small changes affect slightly
the VR, while for intermediate values small
changes have a significant effect on the VR size.
This is due to the existence of a critical distance
between spiral tips which avoids their collision
and annihilation. For values of P, close to the
distance, small changes in P, affect strongly the
VR size.

Increasing the size of the perturbation in the
direction perpendicular to the conditioning
wavefront, P_, resulted in an increase of the VR.
That is because even if the perturbed region was
situated outside the vulnerability region, say at
the distance L from it, then changing P,— P, +
L will guarantee that the perturbation will at
least touch the VR. This effect exists both in 1D
and 2D media.

Our results, obtained with the BZ experiment
and with the Oregonator model, are qualitatively
in agreement with the dependence of the lifetime
of a pair of rotating vortices on the initial
distance between them, measured by Panfilov
and Vasiev [22] with the FitzHugh—Nagumo
model.

Throughout our experiments, the evolution of
an initially discontinuous wavefront can be un-
derstood in terms of the dimensionality of the
medium. In 2D, a broken wave curls up to give a
rotating spiral wave, as we have mentioned
before. In 1D, a perturbation delivered with the
same delay (class 3 responses) will result in only
one propagating pulse. If this 1D experiment
would be performed with an excitable fiber
closed to a circle (periodical boundary condi-
tions), this would give rise to a rotating pulse.

For 1D excitable systems, there is an approxi-
mated relation between the VR, length [ of the
perturbed region, and the propagation velocity
[23,24] ¢:

li¢ >VR. (2)

From this relationship, we see that an increase
of excitability which increases the wavefront
propagation velocity also diminishes the VR
(Figs. 5,6).
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