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The paper considers the evolution of the initial perturbation in an excitable non-linear medium.

The division of movements into “fast’” and ‘“slow™ makes it possible to give a simple analytical

description of all the stages of the process leading to the formation of divergent steady pulses
with acute fronts.,

1. THE theoretical description of excitable structures now under intensive study in
chemistry and biology (see for example [1, 2]) has so far run into considerable mathe-
matical difficulties. Some results can be obtained by means of generalized models
although many important properties of the process are fundamentally associated with
the regulation of the system and their description requires solution of non-linear equa-
tions with partial derivatives. For a one-dimensional system of active elements with
a diffusion link these equations in many cases may be written in the form
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where u, Dy, Dy are constants and ¥(U, V), ¢(U, V) are given non-linear functions-
Only some numerical solutions for non-steady processes in such systems are now knowf?
[2, 3]. The steady pulses of excitation have been considered in some detail but it i
common to use for their analysis additional quite rigid simplifying assumptions [1, 4, 5k

Here we propose a simple analytical approach for obtaining a graphic picture of the

processes of formation and spread of the pulses. The analysis is based on the fact that
in actual conditions the processes, as a rule, have a relaxation character. Mathematicallf
this means smallness of the parameter x in the first equation (1). This point may &
usual be used to separate the wave processes into “fast” and “slow”.
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In the stage fast in time and occurring in a period of the order p the function ¥V

| does not have time to change and from (1) we get
ou 0*U

——Dy
ox?

o

—wU,V)=0, V=V(x), )

where & =1/u is the “fast” time. For slow processes it is possible to discard in (1) the

oU o
term 2 T obtaining first order equations in respect of .

o
olating the fast and slow changes in the values in space is also

The possibility of is
les of these changes are large as compared with the

important. If the characteristic sca
diffusion length L= Dy v T (T is the characteristic time of the process), then the
diffusion terms in (1) may be disregarded. As a result we get ordinary differential equa-
tions. In this approximation the changes in U and V occur independently at all points
of space and again division into fast and slow movements in respect of ¢ is possible.
The fast changes in space have the form of quite sharp moving boundaries (falls) which
generally speaking, are described by equation (2). Below, for specificity we set the form
of the functions ¢ and ¥ as follows. ¢ = —y U=V, ¥=V—f(U) where p is a constant

v=FU)

Viriax

Vequilib.

Fic. 1. Form of non-linear function of £(U) (solid curve) and its bit-linear approximation
(broken line).

and f (U) has a N-shaped form (Fig. 1). Such an approximation is sufficient to
describe the main features of the wave process and to obtain a solution in analytical

form. We shall here consider that the equation of equilibrium yU=—V and f(U)=V

has only one solution Uequitin> Vequitivs corresponding to the stable state (see Fig. 1).
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2. We shall first discuss the processes fast in time and described by the non-linsys
equation (2). Its solutions for F'=const were already considered in [1, 6-8]. For e
set V=V, in (2) it has either one or in the more interesting case, two and three States
of equilibrium determined by the zeros of the function Y(U, V,). The points 1 {re
fractoriness) and 3 (excitation) in Fig. 1 correspond to the states stable in relation 1

PQ -5 -4 -3 -7 a (A

2 T T T T 1 T T 1

/ = —
+af

ar g

-a,

_/ e -
-2 ! 1 ] | I Yo

1
=5 4 =3 -~z g 1 2
Ye o Wit

F1G. 2. Rate of steady fall as a function of the parameter ¥, for the broken line in Fig. § .
(Vmax:‘z: len=~6; U5=2; U3=4; U2=46)‘

b

the fast movements. A special role among the solutions of (2) is played by the steady
(running without deformation) wave in which U depends on one variable n=x-af
(a—rate constant). The limited solutions of this type have the form of steady falls
(separatrix) joining these points of equilibrium. It is necessary to distinguish waves
taking the system from the unstable state (2) to the stable (I or 3) from the transitions

o .
between two stable states. A particular case of waves of the first type (when 5{7 s 8

monotonic functioﬁ) was discussed for example, in [6]. There exists a set of such waves

with arbitrary values of speed g, exceeding Tin=2 v Dy, fy(2) where f7 (2) is taken at the
point 2. In our case, of the greatest interest are the solutions of the second type joining
the stable points 7 and 3 (see also [7]). To such solutions corresponds the single speed

a=a(V,) the direction of which depends on ¥V, and changes for a certain Vo=V
* 3)
The value ¥, is determined by the condition {¥U, Vv, )dU=0.Since a(V,;)=0
oU W .
and hence Frae 0 then for | V'~V ;| < u the movement investigated cannot be con&dcrﬁ’fj

fast in time and for the correct description of the process it is necessary to use the full

system (1). As an example Fig. 2 gives the dependence a(V,) for a wave of the second

type calculated analytically for the bit-linear function F).

We would also note the intermediate ¢ase in which for Vo= Vyux OF Vo=V o (8¢
Fig. 1) the positions of equilibrium 2 and 3 or 7 and 2 merge. It is possible to show
that, as with the waves of the first type, here there is a continuum of solutions joining
the two special points.

These steady waves possess definite asymptotic properties. Thus, the wave of the
first type with a=a,,, is asymptotic for the initial perturbations of a definite class o¢-

cupying a restricted interval [6], the same applies to the single wave of the second type

s

16, 3.

itis als
ontor
5 statemg
sl pert
Hy=CO

2d abo

Lements
. Wes
i the
wal pert
s~iderak
5ohe tak
inline
= the f¢
1. The
rod At
the pu

suerent

“erefore,

4. Th

“Liheva

©each g

e law




Formation of pulses in an excitable medium

v
Vequilib.

Vmin

Veguilib.

Venin

Vequilih
Vinin

. Va:]uihb.

Vinin

Fig. 3. Process of formation of pulses for V> Ve (solid line—U, dot-dash line— V).

@} It is also important to note that all the steady waves arc exponentially stable in
xlation to minor (linear) perturbations. As a result it appears possible to state (although
this statement cannot be considered to be strictly demonstrated in all cases) that any
initial perturbation in the form of a sufficiently sharp drop in the function U with
V=1, =const in the “fast” period will lead to one of the steady running waves dis-
cussed above. Therefore, the whole region of excitation consists of portions of slow
movements separated by rapid quasi-steady falls.

3. We shall now consider the process of evolution of the pulse in a relaxation medium
ssing the division into “fast” and ‘“‘slow” movements. We shall set a quite smooth
intial perturbation of the function U=U(x, 0), the characteristic dimension of which

nsiderably exceeds the diffusion scale. The value ¥ at the initial moment for simplicity
ill be taken as constant and equal to its equilibrium value Vequitiv™> Vit
In Jine with the above remarks the process of evolution of the pulse may be divided
#to the following stages (Fig. 3).
A. The initial profile of the perturbation (dot-dash line in Fig. 3a) rapidly (in the
- Period A~ ) changes and assumes an almost rectangular form (Fig. 3a). The margins
: °f the pulse formed are shaped into steady drops of the second type and spread to
different sides, The breakdown of the initial perturbation occurs symmetrically and,
therefore, it suffices to follow the evolution of the pulse in one direction.

B. The margin of the pulse moves at a constant speed a=a, which is determined
by the value Vequinio- The apex of the pulse is formed by slow movements independently
& cach point and its change may be found from an ordinary differential equation.
The law of change in U in slow movement is given by the formula

U
_ ari)
= j —MYU#(U)J(UZ’ U). €))

Uz
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C. When the values U and ¥ reach the magnitudes U, and V,, there is a breag.
down in the state of refractoriness with appearance of a new rap

id steady fall-fajj =
the pulse (Fig. 3¢). It begins to move at the speed a, =a(V,,,) to the same side as the

first jump and together with it forms the pulse of excitation with a duration Tymy
(Us, Us).
The further evolution of the pulse depends on the type of function S(U). For &

relatively symmetrical f (U) always a,>a, and the fall in the pulse shifts to the regics
with V>V, where its speed is clearcut. The length of the pulse monotonically fafl
The rate of the jump diminishes and at the limit #— o0 it becomes equal to the spesd
of the front for V= Vi (Fig. 1). As a result the whole pulse assumes a steady forg,
asymptotically compressed to the length Ly =a,7 (U,, U,) where U is found from the
condition f(U,)= V¥, (branch 3 in Fig. 1). :
For a fundaﬁlentally non-symmetrical function f(U) the case in which 20,<a, 8
possible. The slow movements before the fall lead the points into the state with U= U,
V="V i, from which there occurs the rapid breakdown into the state of refractoriness /,
with a constant delay Ty after excitation and, consequently, the speed of movement
of the point of breakdown is always equal to a,. The fall in the pulse corresponds o
the steady wave of the “intermediate” type with F'=V_, - the speed of its spread a(¥,,}

m

Is equal to the speed of the front. The duration of the pulse does not change.

D. After passage of the pulse a zone of refractoriness forms where the points of
the medium slowly return to the equilibrium state (Fig. 3d).

Thus, the non-steady process leads to the formation of a steady pulse. In one case
this occurs asymptotically and, in the other, the pulse becomes steady immediately
after the formation of a sharp fall. We would emphasize that the resultant pulse is &
steady solution of the initial system (1). The acute front and fall are determined by
the solutions of the “fast” equation (2) and are connected by slow movement whxcb
as such is not equilibrium at each point but thanks to the spatial correlation due to
the movement of the front forms a steadily moving apex of the pulse. h

The conclusions drawn above on the course of the process are confirmed by the
calculations with the computer which were made by us for the initial system (1).

The pattern of the formation of the pulse described is realized for V.

square pulse again forms although its margins now move in the
middle. The perturbation “disperses” and disappears for a finite time.
The “fixed” falls with V=V’

auto-oscillatory regimes is associated with such falls.
As for the area of application of the phasic approach considered in actual situa-
ns it apparently is quite wide, in particular, for concentration waves in chemical
systems. For example, in the case of the reaction of oxidation of bromomalonic acid
by bromate catalysed by cerium ions [9] z=5x10~3 and for the reactions considered
in [2] p=13=10"2. The equations describing the transmission of excitation over

tio

equilib>> Vm:-y:’
If Vequitin< Ve and the initial perturbations corresponds to V= Vequitiv, at the state 4 &

direction towards the

erie 110t described by equation (2) alone, require special
discussion. Here we would merely note that the possibility of the appearance of some ..
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serve fibre also contain a small parameter (u~5x107?) although for them the

ation is somewhat more complicated.
The authors are grateful to A. V. Gaponov, K. A. Gorshkov, A. M. Zhabotinskii

1 A. N. Zaikin for useful comments and discussion of the results of the work.
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The paper considers the problem of the spread of the wave of activity in an homogeneous

isotropic neuronal network. All the neurones are considered (in the subthreshold region)

as possessing a finite memory as a summator of synaptic current. An expression is found

for the synaptic current for the individual neurone in the regime of the steady spread of the

wave activity. An equation is also obtained and analysed for the speed of the spread of the

wave of activity; the possible limiting relations are considered. The results are compared
with the Beurle analysis.

UMEROUS investigations into possible modes of work of neuronal networks are known
d in most cases nefs not distributed in space and described by a matrix of interneu-
nal links with an identical time of passage of the signal for each link are considered.
Cf} an approximation, in fact, does not allow for the geometry of the link but only
rits topological aspect. An exception (of course not the only one) is provided by the
7k of Beurle [1] and Caianello [2] where an attempt is made to consider the wave
activity in a distributed neuronal net [1] and equations are formulated describing.
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